Mechanical Operations

Q1: The sphericity of a cylinder of 1 mm diameter and length 3 mm is

A 0.9

B 0.78

C 0.6

D 0.5

ANS:A - 0.9

Sphericity (Ψ\PsiΨ) is a measure of how closely the shape of an object approaches that of a perfect sphere. It is defined as the ratio of the surface area of a sphere (having the same volume as the object) to the surface area of the object. For a cylinder with diameter ddd and length LLL, the sphericity Ψ\PsiΨ can be calculated using the formula: Ψ=Surface area of sphere with same volume as the cylinderSurface area of the cylinder\Psi = \frac{\text{Surface area of sphere with same volume as the cylinder}}{\text{Surface area of the cylinder}}Ψ=Surface area of the cylinderSurface area of sphere with same volume as the cylinder​ First, calculate the volume of the cylinder: Vcylinder=π(d2)2L=π(1 mm2)2×3 mm=π×0.25×3 mm3=0.75π mm3V_{\text{cylinder}} = \pi \left(\frac{d}{2}\right)^2 L = \pi \left(\frac{1 \text{ mm}}{2}\right)^2 \times 3 \text{ mm} = \pi \times 0.25 \times 3 \text{ mm}^3 = 0.75\pi \text{ mm}^3Vcylinder​=π(2d​)2L=π(21 mm​)2×3 mm=π×0.25×3 mm3=0.75π mm3 The radius rrr of a sphere with the same volume is found from: Vsphere=43πr3=0.75π mm3  ⟹  r3=0.75×34=0.5625  ⟹  r=0.56253≈0.825 mmV_{\text{sphere}} = \frac{4}{3}\pi r^3 = 0.75\pi \text{ mm}^3 \implies r^3 = 0.75 \times \frac{3}{4} = 0.5625 \implies r = \sqrt[3]{0.5625} \approx 0.825 \text{ mm}Vsphere​=34​πr3=0.75π mm3⟹r3=0.75×43​=0.5625⟹r=30.5625​≈0.825 mm Next, calculate the surface areas:

  1. Surface area of the sphere:
Asphere=4πr2=4π(0.825 mm)2≈4π×0.6806=2.722π mm2A_{\text{sphere}} = 4\pi r^2 = 4\pi (0.825 \text{ mm})^2 \approx 4\pi \times 0.6806 = 2.722\pi \text{ mm}^2Asphere​=4πr2=4π(0.825 mm)2≈4π×0.6806=2.722π mm2
  1. Surface area of the cylinder:
Acylinder=2π(d2)2+πdL=2π(1 mm2)×3 mm+2π(1 mm2)2A_{\text{cylinder}} = 2\pi \left(\frac{d}{2}\right)^2 + \pi d L = 2\pi \left(\frac{1 \text{ mm}}{2}\right) \times 3 \text{ mm} + 2\pi \left(\frac{1 \text{ mm}}{2}\right)^2Acylinder​=2π(2d​)2+πdL=2π(21 mm​)×3 mm+2π(21 mm​)2 Acylinder=2π×0.5×3+2π×0.25A_{\text{cylinder}} = 2\pi \times 0.5 \times 3 + 2\pi \times 0.25Acylinder​=2π×0.5×3+2π×0.25 Acylinder=3π+0.5π=3.5π mm2A_{\text{cylinder}} = 3\pi + 0.5\pi = 3.5\pi \text{ mm}^2Acylinder​=3π+0.5π=3.5π mm2 Finally, calculate the sphericity: Ψ=AsphereAcylinder=2.722π3.5π=2.7223.5≈0.777\Psi = \frac{A_{\text{sphere}}}{A_{\text{cylinder}}} = \frac{2.722\pi}{3.5\pi} = \frac{2.722}{3.5} \approx 0.777Ψ=Acylinder​Asphere​​=3.5π2.722π​=3.52.722​≈0.777 So, the sphericity of the cylinder is approximately 0.78.



img not found
img

For help Students Orientation
Mcqs Questions

One stop destination for examination, preparation, recruitment, and more. Specially designed online test to solve all your preparation worries. Go wherever you want to and practice whenever you want, using the online test platform.