Surveying

Q1: If the rate of gain of radial acceleration is 0.3 m per sec3 and full centrifugal ratio is developed. On the curve the ratio of the length of the transition curve of same radius on road and railway, is

A 2.828

B 3.828

C 1.828

D 0.828.

ANS:A - 2.828

In question, it is asking "length of transition curve of road (L1) to railways (L2) ".
The simplified formula is.
L1/L2 = ( (C.Rfor road) ^3/2) /( (C.R for railway) ^3/2).
Put values in the above formula.
L1/L2 = ( (1/4) ^3/2)/( (1/8) ^3/2) ) = 2.828. Centrifugal ratio for road = 1/4,
Centrifugal ratio for railway = 1/8,

Centrifugal ratio(c.r.)=V^2/Rg where R is the radius and g is acc. due to gravity ---> Eq. 1,
and also V^2/R=Acc.rate x t where t is the time ---> Eq. 2.

V^2 is directly proportional to C.R. since R and g is constant.R is constant since the same radius is given for road and railway.

Therefore V is directly proportional to (C.R.)^(1/2).

Now from Eq. 2.
t=V^2/acc. rate*R ---> Eq. 3.
And we also know that L=V*t, where L is length v, is vel. and t is time.
Putting the value of t from Eq. 3 in the above equation we will get,
L=V^3/acc. rate * R.

Now, L is directly proportional to V^3 since acc. rate and radius are constant for both road and railway.

And V is directly proportional to C.R.^(1/2),
Hence L is directly proportional to C.R.^(3/2),
Now L1(road)=k*(1/4)^(3/2).
L2(railway)=k*(1/8)^(3/2).
Dividing L1 by L2.
We get L1/L2=(√8)=2*(√2) = 2*1.414 = 2.828. C.R.=v^2/Rg ---> eqn1
From this formula, v is proportional to under root of C.R.
L=V^3/CR ---> eqn2.

Now from enq 1 we can say that.
L1=(C.R.1)^(3/2),
L2=(C.R.2)^(3/2),
C.R.1=1/4,
C.R.2=1/8,
THEN L1/L2=(1/4)^(3/2)÷(1/8)^(3/2)=2^(3/2)=2.828. Centrifugal ratio for road = 1/4,
Centrifugal ratio for railway = 1/8,

Centrifugal ratio(c.r.)=V^2/Rg where R is the radius and g is acc. due to gravity ---> Eq. 1,
and also V^2/R=Acc.rate x t where t is the time ---> Eq. 2.

V^2 is directly proportional to C.R. since R and g is constant.R is constant since the same radius is given for road and railway.

Therefore V is directly proportional to (C.R.)^(1/2).

Now from Eq. 2.
t=V^2/acc. rate*R ---> Eq. 3.
And we also know that L=V*t, where L is length v, is vel. and t is time.
Putting the value of t from Eq. 3 in the above equation we will get,
L=V^3/acc. rate*R.

Now, L is directly proportional to V^3 since acc. rate and radius are constant for both road and railway.

And V is directly proportional to C.R.^(1/2),
Hence L is directly proportional to C.R.^(3/2),
Now L1(road)=k*(1/4)^(3/2).
L2(railway)=k*(1/8)^(3/2).
Dividing L1 by L2.
We get L1/L2=( √8)=2*(√2) = 2*1.414 = 2.828. For road centrifugal ratio = 1/4.
For railway = 1/8.
Centrifugal ratio = v^2/Rg.
R = radius

(v^2/r) = Acceleration rate * t.
t = time

t = L/v.
L = length.
v = velocity.

Here we get L=(v^3)/(acceleration * r).

Acceleration is given and r is same for road and railway.
So, L is directly proportional to v^3 and from centrifugal ratio = v^2/Rg.
v is directly proportional to square root of the centrifugal ratio.

From here ratio of length for road and railway;
L1/L2= (1/2)^3/(1/square root 8)^3.
= 2 * square root 2.
= 2 * 1.414.
= 2.828.



img not found
img

For help Students Orientation
Mcqs Questions

One stop destination for examination, preparation, recruitment, and more. Specially designed online test to solve all your preparation worries. Go wherever you want to and practice whenever you want, using the online test platform.