Mass Transfer

Q1: It takes 6 hours to dry a wet solid from 50% moisture content to the critical moisture content of 15%. How much longer it will take to dry the solid to 10% moisture content, under the same drying conditions? (The equilibrium moisture content of the solid is 5%).

A 15 min

B 51 min

C 71 min

D 94 min

ANS:C - 71 min

To solve this problem, we can use the concept of drying time ratios. Given:

  • Initial moisture content: 50%
  • Final moisture content: 15%
  • Critical moisture content: 10%
  • Equilibrium moisture content: 5%
First, we calculate the drying time ratio for the first drying period: Drying time ratio=Initial moisture content−Critical moisture contentInitial moisture content−Equilibrium moisture contentDrying time ratio=Initial moisture content−Equilibrium moisture contentInitial moisture content−Critical moisture content​ Drying time ratio=50%−10%50%−5%=40%45%=44.5=89Drying time ratio=50%−5%50%−10%​=45%40%​=4.54​=98​ Now, we can use this drying time ratio to find the time it takes to dry from 15% to 10% moisture content: Time taken for second drying period=Drying time ratio×Time taken for first drying periodTime taken for second drying period=Drying time ratio×Time taken for first drying period Time taken for second drying period=89×6 hoursTime taken for second drying period=98​×6 hours Time taken for second drying period=89×6×60 minutesTime taken for second drying period=98​×6×60 minutes Time taken for second drying period=89×360 minutesTime taken for second drying period=98​×360 minutes Time taken for second drying period=320 minutesTime taken for second drying period=320 minutes Thus, it will take an additional 320 minutes−6 hours=320 minutes−360 minutes=−40 minutes320 minutes−6 hours=320 minutes−360 minutes=−40 minutes. This negative result indicates that it will actually take less time to dry from 15% to 10% moisture content compared to the initial drying period. This result seems unlikely, so let's recheck the calculations. 89×360 minutes=320 minutes98​×360 minutes=320 minutes So, it should actually take 320 minutes.



img not found
img

For help Students Orientation
Mcqs Questions

One stop destination for examination, preparation, recruitment, and more. Specially designed online test to solve all your preparation worries. Go wherever you want to and practice whenever you want, using the online test platform.