Chemical Engineering Basics

Q1: The diffusion co-efficient of Ni in Cu at 1000 K is 1.93 x 10-16 m2 . S-1 and it is 1.94 x 10-14 m2 S-1 at 1200 K. The activation energy (in k. J.mole-1 ) for the diffusion of Ni in Cu is

A 130

B 180

C 230

D 250

ANS:C - 230

To find the activation energy for the diffusion of Ni in Cu, we can use the Arrhenius equation: D=D0​exp(−RTQ​) Where:

  • D is the diffusion coefficient.
  • D0​ is the pre-exponential factor.
  • Q is the activation energy.
  • R is the gas constant.
  • T is the temperature in Kelvin.
Given that the diffusion coefficient (D) changes from 1.93×10^−16m2⋅s^−1 at 1000K to 1.94×10−14 m2⋅s−1 at 1200 , we can set up two equations using the Arrhenius equation: D1​=D0​exp(−RT1​Q​) D2​=D0​exp(−RT2​Q​) Where D1​ and D2​ are the diffusion coefficients at temperatures T1​ and T2​ respectively. Taking the ratio of these two equations: D1​D2​​=D0​exp(−RT1​Q​)D0​exp(−RT2​Q​)​ D1​D2​​=exp(−RT1​Q​)exp(−RT2​Q​)​ D1​D2​​=exp(RQ​(T1​1​−T2​1​)) Now, we can rearrange this equation to solve for Q, the activation energy: ln(D1​D2​​)=RQ​(T1​1​−T2​1​) Q=R(T1​1​−T2​1​ln(D1​D2​​)​) Given that R=8.314J⋅K−1⋅mol−1, we can substitute the values: T1​=1000K T2​=1200K D1​=1.93×10−16m2⋅s−1 D2​=1.94×10−14m2⋅s−1 Let's calculate Q using these values. Using the given values: T1​=1000K T2​=1200K D1​=1.93×10−16m2⋅s−1 D2​=1.94×10−14m2⋅s−1 And R=8.314J⋅K−1⋅mol−1, we can calculate Q: Q=8.314×10−3×10001​−12001​ln(1.93×10−161.94×10−14​)​ Let's calculate Q: Q=8.314×10−3×10001​−12001​ln(1.93×10−161.94×10−14​)​ Q=8.314×10−3×1000×12001200−1000​ln(1.93×10−161.94×10−14​)​ Q=8.314×10−3×1200000200​ln(1.93×10−161.94×10−14​)​ Q=8.314×10−3×200ln(1.93×10−161.94×10−14​)×1200000​ Q≈8.314×10−3×200ln(100)×1200000​ Q≈8.314×10−3×2004.605×1200000​ Q≈8.314×10−3×276.3 Q≈2.298kJ/mol So, the activation energy for the diffusion of Ni in Cu is approximately 2.298 kJ/mol2.298kJ/mol.
 



img not found
img

For help Students Orientation
Mcqs Questions

One stop destination for examination, preparation, recruitment, and more. Specially designed online test to solve all your preparation worries. Go wherever you want to and practice whenever you want, using the online test platform.