Heat Transfer

Q1: The radiation heat flux from a heating element at a temperature of 800°C, in a furnace maintained at 300°C is 8 kW/m2. The flux, when the element temperature is increased to 1000°C for the same furnace temperature is

A 11.2 kW/m2

B 12.0 kW/m2

C 14.6 kW/m2

D 16.5 kW/m2

ANS:D - 16.5 kW/m2

To find the radiation heat flux when the temperature of the heating element is increased from 800°C to 1000°C while maintaining the furnace temperature at 300°C, we can use the Stefan-Boltzmann law, which states: (element4−furnace4)AQ​=εσ(Telement4​−Tfurnace4​) Where:

  • Q/A is the heat flux (W/m²),
  • ε is the emissivity of the surface (assumed to be 1 for a blackbody),
  • σ is the Stefan-Boltzmann constant (5.67×10−85.67×10−8 W/m²K⁴),
  • elementTelement​ is the temperature of the heating element (in Kelvin),
  • furnaceTfurnace​ is the temperature of the furnace (in Kelvin).
Let's calculate the heat flux for both temperatures and find the difference: For element=800°Telement​=800°C: element=800+273.15=1073.15 KTelement​=800+273.15=1073.15K For element=1000°Telement​=1000°C: element=1000+273.15=1273.15 KTelement​=1000+273.15=1273.15K Given:
  • furnace=300+273.15=573.15 KTfurnace​=300+273.15=573.15K
  • =5.67×10−8 W/m²K⁴σ=5.67×10−8W/m²K⁴
  • =8 kW/m²=8000 W/m²Q/A=8kW/m²=8000W/m² (converted to watts per square meter)
Using the Stefan-Boltzmann law, we find: For element=800°Telement​=800°C: =(1)×(5.67×10−8)×(1073.154−573.154)AQ​=(1)×(5.67×10−8)×(1073.154−573.154) =8000×(1073.154−573.154)AQ​=8000×(1073.154−573.154) For element=1000°Telement​=1000°C: =(1)×(5.67×10−8)×(1273.154−573.154)AQ​=(1)×(5.67×10−8)×(1273.154−573.154) =8000×(1273.154−573.154)AQ​=8000×(1273.154−573.154) Let's calculate these values. First, we need to calculate the heat flux for the initial temperature of the heating element: =(1)×(5.67×10−8)×(1073.154−573.154)AQ​=(1)×(5.67×10−8)×(1073.154−573.154) =8000×(1073.154−573.154)AQ​=8000×(1073.154−573.154) Let's calculate (1073.154−573.154)(1073.154−573.154): We need to calculate (1073.154−573.154)(1073.154−573.154): (1073.154−573.154)(1073.154−573.154) =(1150325513671.8817−30604316807.920204)=(1150325513671.8817−30604316807.920204) =1149694906863.9615=1149694906863.9615 Now, let's calculate the heat flux for the initial temperature of the heating element: =8000×(1149694906863.9615)AQ​=8000×(1149694906863.9615) ≈9197559254911.692 W/m2AQ​≈9197559254911.692W/m2 Now, let's calculate the heat flux for the increased temperature of the heating element: =(1)×(5.67×10−8)×(1273.154−573.154)AQ​=(1)×(5.67×10−8)×(1273.154−573.154) =8000×(1273.154−573.154)AQ​=8000×(1273.154−573.154) Let's calculate (1273.154−573.154)(1273.154−573.154): We need to calculate (1273.154−573.154)(1273.154−573.154): (1273.154−573.154)(1273.154−573.154) =(2764254322337.1704−30604316807.920204)=(2764254322337.1704−30604316807.920204) =2733640004529.2505=2733640004529.2505 Now, let's calculate the heat flux for the increased temperature of the heating element: =8000×(2733640004529.2505)AQ​=8000×(2733640004529.2505) ≈21869120036234.004 W/m2AQ​≈21869120036234.004W/m2 So, the heat flux when the element temperature is increased to 1000°C for the same furnace temperature is approximately 21.87 kW/m221.87kW/m2.



img not found
img

For help Students Orientation
Mcqs Questions

One stop destination for examination, preparation, recruitment, and more. Specially designed online test to solve all your preparation worries. Go wherever you want to and practice whenever you want, using the online test platform.