- Networks Analysis and Synthesis - Section 1
- Networks Analysis and Synthesis - Section 2
- Networks Analysis and Synthesis - Section 3
- Networks Analysis and Synthesis - Section 4
- Networks Analysis and Synthesis - Section 5
- Networks Analysis and Synthesis - Section 6
- Networks Analysis and Synthesis - Section 7
- Networks Analysis and Synthesis - Section 8
- Networks Analysis and Synthesis - Section 9
- Networks Analysis and Synthesis - Section 10
- Networks Analysis and Synthesis - Section 11
- Networks Analysis and Synthesis - Section 12
- Networks Analysis and Synthesis - Section 13
- Networks Analysis and Synthesis - Section 14
- Networks Analysis and Synthesis - Section 15
- Networks Analysis and Synthesis - Section 16
- Networks Analysis and Synthesis - Section 17
- Networks Analysis and Synthesis - Section 18
- Networks Analysis and Synthesis - Section 19
- Networks Analysis and Synthesis - Section 20
- Networks Analysis and Synthesis - Section 21
- Networks Analysis and Synthesis - Section 22
- Networks Analysis and Synthesis - Section 23
- Networks Analysis and Synthesis - Section 24
- Networks Analysis and Synthesis - Section 25
- Networks Analysis and Synthesis - Section 26
- Networks Analysis and Synthesis - Section 27


Networks Analysis and Synthesis - Engineering
Q1: The time constant of the capacitance circuit is defined as the time during which voltageA
falls to 36.8% of its final steady value
B
rises to 38.6% of its final steady value
C
rises to 63.2% of its final steady value.
D
none of the above.
ANS:C - rises to 63.2% of its final steady value. No answer description is available. |


For help Students Orientation
Mcqs Questions
One stop destination for examination, preparation, recruitment, and more. Specially designed online test to solve all your preparation worries. Go wherever you want to and practice whenever you want, using the online test platform.