Chemical Engineering Basics - Engineering

Q1:

Yield strength of a polycrystalline metal with an average grain size, d, is proportional to

A d1/2

B d-1/2

C d

D d-1

ANS:B - d-1/2

The yield strength of a polycrystalline metal with an average grain size, d, is inversely proportional to the square root of the grain size, represented as d^−1/2. Explanation:

  • In polycrystalline materials, the presence of grain boundaries affects mechanical properties such as yield strength.
  • As the grain size decreases, the number of grain boundaries increases. These grain boundaries act as barriers to dislocation movement, which strengthens the material.
  • The Hall-Petch equation describes the relationship between the yield strength (σy​) and the average grain size (d) in polycrystalline materials:
σy​=σ0​+k⋅d−1/2 Where:
  • σ0​ is the initial yield strength of the material (i.e., when the grain size approaches infinity).
  • k is the Hall-Petch constant.
  • d is the average grain size.
  • From the Hall-Petch equation, it's clear that the yield strength is inversely proportional to the square root of the grain size, represented by the term d−1/2.
Therefore, the yield strength of a polycrystalline metal is proportional to d−1/2.